SOLUTIONS TO EXERCISES

[Last updated 7/7/2015]
[Solutions to Problem 3, 4 need to be verified.]

Chapter 3.

1. Three inequalities can replace two equations. A slack variable is a variable introduced to convert an inequality into an equation.
2. A system of simultaneous equations is consistent if it has at least one solution. It is redundant if one of the equations can be expressed as a linear combination of the other equations. A solution is degenerate if one or more of its components are zero. Yes; the system of equations is redundant.
3. Use slack variables to change the following inequalities into a system of equations.

$$
\begin{array}{rr}
\max & 60 x+40 y \\
\text { subject to } & 5 x+2 y+u \leq 52 \\
& x+y+v \leq 20 \\
& x, y, u, v \geq 0
\end{array}
$$

4. Change the following equations into a system of inequalities.

$$
\begin{gathered}
12 x+5 y \leq 30 \\
x+2 y \leq 12 \\
-3 x-2 y \leq 0 \\
u, v, w \geq 0
\end{gathered}
$$

5. State whether the following sets of vectors are linearly dependent or independent.
a. Linearly independent
b. Linearly dependent
c. Linearly dependent
d. Linearly independent
6. The optimal basic variables are x_{2} and x_{3}.
7. The solution space is unbounded.

8. For the following matrices, apply the pivot operation to the bolded elements.
a. $\left[\begin{array}{ccc}-2 & 3 & 3 \\ -2 & 4 & 2 \\ 3 & 5 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc}-2 / 3 & 1 & 1 \\ -2 / 3 & 2 & 0 \\ 11 / 3 & 4 & 0\end{array}\right]$
b. $\left[\begin{array}{cccc}1 & 2 & 2 & 8 \\ 0 & \mathbf{3} & -5 & 1 \\ 6 & 5 & 3 & 5\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 16 / 3 & 22 / 3 \\ 0 & 1 & -5 / 3 & 1 / 3 \\ 6 & 0 & 34 / 3 & 34 / 3\end{array}\right]$
9. The labels do not change during the computation. The labels to the left of the simplex tableau are the current basic variables and therefore change.
10. Solve the following linear programs using the Simplex Method.
a. We introduce the slack variables s_{1}, s_{2} to change the inequalities into a system of equations. We also rewrite the objective function as $P=2 x+y$.

$$
\begin{aligned}
\max & P \\
\text { subject to } & 4 x+y+s_{1}=150 \\
& 2 x-3 y+s_{2}=-40 \\
& -2 x-y+P=0 \\
& x, y, s_{1}, s_{2} \geq 0
\end{aligned}
$$

The initial simplex tableau is

	x	y	s_{1}	s_{2}	P	RHS
s_{1}	4	1	1	0	0	150
s_{2}	2	-3	0	1	0	-40
P	-2	-1	0	0	1	0

	x	y	s_{1}	s_{2}	P	RHS

x	1	0.25	0.25	0	0	37.5
s_{2}	0	-3.5	-0.5	1	0	-115
P	0	-0.5	0.5	0	1	75

	x	y	s_{1}	s_{2}	P	RHS
x	1	0	0.214	0.071	0	29.286
y	0	1	0.143	-0.286	0	32.857
P	0	0	0.571	-0.143	1	91.429

By applying the pivot operation, we obtain the max $P=91.429$ when $x=$ 29.286, $y=32.857, s_{1}=s_{2}=0$.
b. We introduce slack variables s_{1}, s_{2}, s_{3} to change the constraints into equalities. We also rewrite the objective function as $P=6 x+4 y-2 z$.

$$
\begin{aligned}
\max & P \\
\text { subject to } & x+y+4 z+s_{1}=20 \\
& -5 y+5 z+s_{2}=100 \\
& x+3 y+z+s_{3}=400 \\
& -6 x-4 y+2 z+P=0 \\
& x, y, z, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

The initial Simplex tableau is

	x	y	z	s_{1}	s_{2}	s_{3}	P	RHS
s_{1}	1	1	4	1	0	0	0	20
s_{2}	0	-5	5	0	1	0	0	100
s_{3}	1	3	1	0	0	1	0	400
P	-6	-4	2	0	0	0	1	0

	x	y	z	s_{1}	s_{2}	s_{3}	P	RHS
x	1	1	4	1	0	0	0	20
s_{2}	0	-5	5	0	1	0	0	100
s_{3}	0	2	-3	-1	0	1	0	380

P	0	2	26	6	0	0	1	120

By applying the pivot operation, we obtain the max $P=120$ when $y=z=s_{3}=$ $0, x=20, s_{3}=100, s_{3}=380$. Thus, the minimum value of the initial objective function is $-P=-120$.
c. We change the inequalities into a system of equations by introducing the slack variables s_{1}, s_{2}, s_{3}. We also rewrite the objective function as $P=3 x+5 y+2 z$.

$$
\begin{aligned}
\max & P \\
\text { subject to } & 5 x+y+4 z+s_{1}=50 \\
& x-y+z+s_{2}=150 \\
& 2 x+y+2 z+s_{3}=100 \\
& -3 x-5 y-2 z+P=0 \\
& x, y, z, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

The initial Simplex tableau is

	x	y	z	s_{1}	s_{2}	s_{3}	P	RHS
s_{1}	5	1	4	1	0	0	0	50
s_{2}	1	-1	1	0	1	0	0	150
s_{3}	2	1	2	0	0	1	0	100
P	-3	-5	-2	0	0	0	1	0

	x	y	z	s_{1}	s_{2}	s_{3}	P	RHS
y	5	1	4	1	0	0	0	50
s_{2}	6	0	5	1	1	0	0	200
s_{3}	-3	0	-2	-1	0	1	0	50
P	22	0	18	5	0	0	1	250

By applying the pivot operation, we obtain the max value of the objective function $P=250$, when $x=z=s_{1}=0, y=50, s_{2}=200, s_{3}=50$.
11. Solve the following linear programming problems using the Simplex Method. Note that some variables are unrestricted.
a. We turn the objective function into a max, introduce slack variables s_{1}, s_{2} to change the constraints into equalities, and rewrite the objective function as $P=x-y$.
$\max \quad P$

Then, we convert the unrestricted variable x into two nonnegative variables x_{1}, x_{2} such that $x=x_{1}-x_{2}$. We have
$\max \quad P$
subject to $\quad x_{1}-x_{2}+2 y+s_{1}=100$

$$
3 x_{1}-3 x_{2}-6 y+s_{2}=650
$$

$$
-x_{1}+x_{2}+y+P=0
$$

$$
x_{1}, x_{2}, y \geq 0
$$

The initial Simplex tableau is

	x_{1}	x_{2}	y	s_{1}	s_{2}	P	RHS
s_{1}	1	-1	2	1	0	0	100
s_{2}	3	-3	-6	0	1	0	600
P	-1	1	1	0	0	1	0

	x_{1}	x_{2}	y	s_{1}	s_{2}	P	RHS
x_{1}	1	-1	2	1	0	0	100
s_{2}	0	0	-12	-3	1	0	300
P	0	0	3	1	0	1	100

By applying the pivot operation, we obtain the maximum value $P=100$, when $y=s_{1}=0, x=x_{1}-x_{2}=100, s_{2}=300$. Thus, the minimum value of the initial objective function is $-P=-100$.
b. We introduce slack variables s_{1}, s_{2}, s_{3} in order to turn the constraints into equalities, and we rewrite the objective function $P=x+y+2 z$.

$$
\begin{aligned}
& \text { subject to } \quad x+2 y+s_{1}=100 \\
& 3 x-6 y+s_{2}=650 \\
& -x+y+P=0 \\
& y \geq 0, x \text { unrestricted }
\end{aligned}
$$

$\max \quad P$
subject to $\quad 5 x+y+z+s_{1}=240$

$$
\begin{aligned}
& x-y+z+s_{2}=-50 \\
& 2 x+y+2 z+s_{3}=400 \\
& -x-y-2 z+P=0 \\
& \quad x, z, s_{1}, s_{2}, s_{3} \geq 0, y \text { unrestricted }
\end{aligned}
$$

We convert the unrestricted variable y into two nonnegative variables y_{1}, y_{2} such that $y=y_{1}-y_{2}$. We have

$$
\begin{array}{rc}
\max & P \\
\text { subject to } & 5 x+y_{1}-y_{2}+z+s_{1}=240 \\
& x-y_{1}+y_{2}+z+s_{2}=-50 \\
& 2 x+y_{1}-y_{2}+2 z+s_{3}=400 \\
& -x-y_{1}+y_{2}-2 z+P=0 \\
& x, z, s_{1}, s_{2}, s_{3}, y_{1}, y_{2} \geq 0
\end{array}
$$

The initial Simplex tableau is

	x	y_{1}	y_{2}	z	s_{1}	s_{2}	s_{3}	P	RHS
s_{1}	5	1	-1	1	1	0	0	0	240
s_{2}	1	-1	1	1	0	1	0	0	-50
s_{3}	2	1	-1	2	0	0	1	0	400
P	-1	-1	1	-2	0	0	0	1	0

	x	y_{1}	y_{2}	z	s_{1}	s_{2}	s_{3}	P	RHS
z	3	0	0	1	0.5	0.5	0	0	95
y_{1}	2	1	-1	0	0.5	-0.5	0	0	145
s_{3}	-6	0	0	0	-1.5	-0.5	1	0	65
P	7	0	0	0	1.5	0.5	0	1	335

By applying the pivot operation, we obtain the max of $P=335$ when $x=s_{1}=s_{2}=0$, $y=y_{1}-y_{2}=145, z=95, s_{3}=65$.
12. The objective function and constraints are

$$
\min \quad 0.1 x+0.12 y
$$

$$
\text { subject to } \quad \begin{aligned}
6 x+y & \geq 250 \\
2 x+4 y & \geq 350 \\
3 x+7 y & \geq 420 \\
x, y & \geq 0
\end{aligned}
$$

where x and y represent the number of Pill I and Pill II, respectively. We turn the objective function into a max and introduce slack variables s_{1}, s_{2}, s_{3} to change the inequalities into equations. We rewrite the objective function as $P=-0.1 x-0.12 y$.

$$
\begin{array}{rc}
\max & P \\
\text { subject to } & 6 x+y-s_{1}=250 \\
& 2 x+4 y-s_{2}=350 \\
& 3 x+7 y-s_{3}=420 \\
& 0.1 x+0.12 y+P=0 \\
& x, y, s_{1}, s_{2}, s_{3} \geq 0
\end{array}
$$

We now rewrite the equations with $x^{\prime}=-x, y^{\prime}=-y$.

$$
\begin{aligned}
\max & P \\
\text { subject to } & -6 x^{\prime}-y^{\prime}-s_{1}=250 \\
& -2 x^{\prime}-4 y^{\prime}-s_{2}=350 \\
& -3 x^{\prime}-7 y^{\prime}-s_{3}=420 \\
& -0.1 x^{\prime}-0.12 y^{\prime}+P=0 \\
& x, y, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

The initial Simplex tableau is

	x^{\prime}	y^{\prime}	s_{1}	s_{2}	s_{3}	P	RHS
s_{1}	-6	-1	-1	0	0	0	250
s_{2}	-2	-4	0	-1	0	0	350
s_{3}	-3	-7	0	0	-1	0	420
P	-0.1	-0.12	0	0	0	1	0

	x^{\prime}	y^{\prime}	s_{1}	s_{2}	s_{3}	P	RHS
y^{\prime}	6	1	1	0	0	0	-250

s_{2}	22	0	4	-1	0	0	-650
s_{3}	39	0	7	0	-1	0	-1330
P	0.62	0	0.12	0	0	1	-30

By applying the pivot operation, we obtain the maximum value of $P=-30$ when $x=s_{1}=0, y=-y^{\prime}=250, s_{2}=650, s_{3}=1330$. Thus, the minimum value of the initial objective function is $-P=30$.
13. The objective function and constraints are

$$
\begin{array}{rc}
\max & 7 x+5 y+3 z \\
\text { subject to } & 3 x+y+z \leq 600 \\
& 2 x+3 y+2 z \leq 420 \\
& 2 x+y+2 z \leq 480 \\
& x, y, z \geq 0
\end{array}
$$

where x, y, z represent the number of type $\mathrm{A}, \mathrm{B}, \mathrm{C}$ accessories, respectively. Then, we introduce slack variables s_{1}, s_{2}, s_{3} to change the inequalities into equations and rewrite the objective function.

$$
\begin{aligned}
\max & P \\
\text { subject to } & 3 x+y+z+s_{1}=600 \\
& 2 x+3 y+2 z+s_{2}=420 \\
& 2 x+y+2 z+s_{3}=480 \\
& -7 x-5 y-3 z+P=0 \\
& x, y, z, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

The initial Simplex tableau is

	x	y	z	s_{1}	s_{2}	s_{3}	P	RHS
s_{1}	3	1	1	1	0	0	0	600
s_{2}	2	3	2	0	1	0	0	420
s_{3}	2	1	2	0	0	1	0	480
P	-7	-5	-3	0	0	0	1	0

	x	y	z	s_{1}	s_{2}	s_{3}	P	RHS
x	1	0	0.143	0.429	-0.143	0	0	197.143

y	0	1	0.571	-0.286	0.429	0	0	8.571
s_{3}	0	0	1.143	-0.571	-0.143	1	0	77.143
P	0	0	0.857	1.571	1.143	0	1	1422.857

By applying the pivot operation, we obtain the maximum profit $P=1422.875$ when $z=s_{1}=$ $s_{2}=0, x=197.143, y=8.571, s_{3}=77.143$.

